Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Nano Lett ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598369

RESUMO

Cancer stem cells (CSCs) with hyperactivated signal transducer and activator of transcription 3 (STAT3) are a major driver of hepatocellular carcinoma (HCC). Herein, we report a nanointegrative proteolysis-targeting chimera (PROTAC)-based STAT3 degradation strategy that enables efficient chemical reprogramming of HCC-associated CSCs, which potently inhibits CSC growth while evoking anti-HCC immune responses. The PROTAC prodrug was synthesized by conjugating the STAT3 binding domain (inS3) with a thioketal-caged E3 ligase ligand (VL-TK) via an oligo(ethylene glycol) linker (OEG) with tuned length and flexibility and encapsulating it in cRGD-modified cationic liposomes for CSC-targeted delivery while facilitating their lysosomal escape. The PROTAC prodrugs were activated by the upregulated ROS levels in CSCs and efficiently degraded STAT3 for chemical reprogramming, which would not only impair their stemness features but also remodel the immunosuppressive TME into an immunosupportive state to boost anti-HCC immunity. This strategy provides an approach for improving HCC treatment in clinics.

2.
ACS Nano ; 18(11): 8360-8382, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38457334

RESUMO

Supramolecular hydrogels emerge as a promising paradigm for sutureless wound management. However, their translation is still challenged by the insufficient mechanical robustness in the context of complex wounds in dynamic tissues. Herein, we report a tissue-adhesive supramolecular hydrogel membrane based on biocompatible precursors for dressing wounds in highly dynamic tissues, featuring robust mechanical resilience through programmable strain-adaptive entanglement among microdomains. Specifically, the hydrogels are synthesized by incorporating a long-chain polyurethane segment into a Schiff base-ligated short-chain oxidized cellulose/quaternized chitosan network via acylhydrazone bonding, which readily establishes interpenetrating entangled microdomains in dynamic cross-linked hydrogel matrices to enhance their tear and fatigue resistance against extreme mechanical stresses. After being placed onto dynamic tissues, the hydrogel dressing could efficiently absorb blood to achieve rapid hemostasis. Moreover, metal ions released from ruptured erythrocytes could be scavenged by the Schiff base linkers to form additional ionic bonds, which would trigger the cross-linking of the short-chain components and establish abundant crystalline microdomains, eventually leading to the in situ stiffening of the hydrogels to endure heavy mechanical loads. Benefiting from its hemostatic capacity and strain adaptable mechanical performance, this hydrogel wound dressing shows promise for the clinical management of various traumatic wounds.


Assuntos
Quitosana , Hemostáticos , Hidrogéis , Bases de Schiff , Hemostasia , Antibacterianos
3.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 198-203, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38322510

RESUMO

Objective: To establish and evaluate a microbial sensitivity test method for Neisseria gonorrhoeae based on resazurin coloration. Methods: Based on the broth microdilution method, resazurin was added as a live bacteria indicator. WHO G, a WHO gonococcal reference strain, was used to optimize the incubation time for resazurin-stained bacteria and the color change was visually observed to obtain the results. Agar dilution method (the gold standard) and resazurin-based microdilution assay were used to determine the minimum inhibitory concentration (MIC) of azithromycin, ceftriaxone, and spectinomycin for 3 reference strains and 32 isolates of Neisseria gonorrhoeae. The results were analyzed based on essential agreement (EA), which reflected the consistency of the MIC values, category agreement (CA), which reflected the consistency in the determination of drug resistance, intermediary, and sensitivity, very major error (VME), which reflected false sensitivity, and major error (ME), which reflected pseudo drug resistance, to evaluate the accuracy of resazurin-based microdilution assay as a microbial sensitivity test of of Neisseria gonorrhoeae. CA and EA rates≥90% and VME and ME rates≤3% were found to be the acceptable performance rates. Results: The results obtained 6 hours after resazurin was added were consistent with those of the agar dilution method and the resazurin-based microdilution assay was established accordingly based on this parameter. The EA of resazurin-based microdilution assay for measuring the MIC results of azithromycin, ceftriaxone, and spectinomycin was 97.1%, 91.5%, and 94.3%, respectively, and the CA was 88.6%, 94.3%, and 94.3%, respectively. The VME was 0% for all three antibiotics, while the ME was 11.4%, 5.7%, and 5.7%, respectively. Conclusion: The resazurin-based microdilution assay established in this study showed good agreement with agar dilution method for measuring the MIC of antibiotics against Neisseria gonorrhoeae. Moreover, the sensitivity results of this method were highly reliable and could be easily obtained through naked eye observation. Nonetheless, the results of drug resistance should be treated with caution and the optimization of parameters should be continued.


Assuntos
Azitromicina , Neisseria gonorrhoeae , Oxazinas , Xantenos , Azitromicina/farmacologia , Ceftriaxona/farmacologia , Espectinomicina , Ágar , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana
4.
Adv Healthc Mater ; 13(9): e2303337, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38154036

RESUMO

Triple-negative breast cancer stem cells (TCSCs) are considered as the origin of recurrence and relapse. It is difficult to kill not only for its resistance, but also the lacking of targetable molecules on membrane. Here, it is confirmed that ST6 ß-galactoside alpha-2,6-sialyltransferase 1 (ST6Gal-1) is highly expressed in TCSCs that may be the key enzyme involved in glycoengineering via sialic acid (SA) metabolism. SA co-localizes with a microdomain on cell membrane termed as lipid rafts that enrich CSCs marker and necroptosis proteins mixed lineage kinase domain-like protein (MLKL), suggesting that TCSCs may be sensitive to necroptosis. Thus, the triacetylated N-azidoacetyl-d-mannosamine (Ac3ManNAz) is synthesized as the glycoengineering substrate and applied to introduce artificial azido receptors, dibenzocyclooctyne (DBCO)-modified liposome is used to deliver Compound 6i (C6), a receptor-interacting serine/threonine protein kinase 1(RIPL1)-RIP3K-mixed lineage kinase domain-like protein(MLKL) activator, to induce necroptosis. The pro-necroptosis effect is aggravated by nitric oxide (NO), which is released from NO-depot of cholesterol-NO integrated in DBCO-PEG-liposome@NO/C6 (DLip@NO/C6). Together with the immunogenicity of necroptosis that releases high mobility group box 1(HMGB1) of damage-associated molecular patterns, TCSCs are significantly killed in vitro and in vivo. The results suggest a promising strategy to improve the therapeutic effect on the non-targetable TCSCs with high expression of ST6Gal-1 via combination of glycoengineering and necroptosis induction.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/terapia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Necroptose , Lipossomos , beta-D-Galactosídeo alfa 2-6-Sialiltransferase , Células-Tronco/metabolismo , Apoptose
5.
ACS Nano ; 17(24): 25419-25438, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38055636

RESUMO

Low-dose radiotherapy (LDR) has shown significant implications for inflaming the immunosuppressive tumor microenvironment (TME). Surprisingly, we identify that FABP-dependent lipid droplet biogenesis in tumor cells is a key determinant of LDR-evoked cytotoxic and immunostimulatory effects and developed a nanointegrated strategy to promote the antitumor efficacy of LDR through cooperative ferroptosis immunotherapy. Specifically, TCPP-TK-PEG-PAMAM-FA, a nanoscale multicomponent functional polymer with self-assembly capability, was synthesized for cooperatively entrapping hafnium ions (Hf4+) and HIF-1α-inhibiting siRNAs (siHIF-1α). The TCPP@Hf-TK-PEG-PAMAM-FA@siHIF-1α nanoassemblies are specifically taken in by folate receptor-overexpressing tumor cells and activated by the elevated cellular ROS stress. siHIF-1α could readily inhibit the FABP3/7 expression in tumor cells via HIF-1α-FABP3/7 signaling and abolish lipid droplet biogenesis for enhancing the peroxidation susceptibility of membrane lipids, which synergizes with the elevated ROS stress in the context of Hf4+-enhanced radiation exposure and evokes pronounced ferroptotic damage in vital membrane structures. Interestingly, TCPP@Hf-TK-PEG-PAMAM-FA@siHIF-1α-enhanced ferroptotic biomembrane damage also facilitates the exposure of tumor-associated antigens (TAAs) to promote post-LDR immunotherapeutic effects, leading to robust tumor regression in vivo. This study offers a nanointegrative approach to boost the antitumor effects of LDR through the utilization of tumor-intrinsic lipid metabolism.


Assuntos
Ferroptose , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Gotículas Lipídicas , Neoplasias/radioterapia , Imunoterapia , Linhagem Celular Tumoral , Microambiente Tumoral
6.
Nat Commun ; 14(1): 7021, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919262

RESUMO

Immune-checkpoint inhibitors (ICI) are promising modalities for treating triple negative breast cancer (TNBC). However, hyperglycolysis, a hallmark of TNBC cells, may drive tumor-intrinsic PD-L1 glycosylation and boost regulatory T cell function to impair ICI efficacy. Herein, we report a tumor microenvironment-activatable nanoassembly based on self-assembled aptamer-polymer conjugates for the targeted delivery of glucose transporter 1 inhibitor BAY-876 (DNA-PAE@BAY-876), which remodels the immunosuppressive TME to enhance ICI response. Poly ß-amino ester (PAE)-modified PD-L1 and CTLA-4-antagonizing aptamers (aptPD-L1 and aptCTLA-4) are synthesized and co-assembled into supramolecular nanoassemblies for carrying BAY-876. The acidic tumor microenvironment causes PAE protonation and triggers nanoassembly dissociation to initiate BAY-876 and aptamer release. BAY-876 selectively inhibits TNBC glycolysis to deprive uridine diphosphate N-acetylglucosamine and downregulate PD-L1 N-linked glycosylation, thus facilitating PD-L1 recognition of aptPD-L1 to boost anti-PD-L1 therapy. Meanwhile, BAY-876 treatment also elevates glucose supply to tumor-residing regulatory T cells (Tregs) for metabolically rewiring them into an immunostimulatory state, thus cooperating with aptCTLA-4-mediated immune-checkpoint inhibition to abolish Treg-mediated immunosuppression. DNA-PAE@BAY-876 effectively reprograms the immunosuppressive microenvironment in preclinical models of TNBC in female mice and provides a distinct approach for TNBC immunotherapy in the clinics.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antígeno B7-H1 , Inibidores de Checkpoint Imunológico/uso terapêutico , Terapia de Imunossupressão , DNA , Microambiente Tumoral , Linhagem Celular Tumoral
7.
Medicine (Baltimore) ; 102(45): e35953, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37960754

RESUMO

Cervical cancer (CC) is the fourth most common cancer in women worldwide. It develops through precancerous lesions (cervical intraepithelial neoplasia (CIN), graded from low-grade (CIN1) to high-grade (CIN2-3)). It is well established that precancerous and cancerous cervical lesions are caused by a persistent infection with high-risk types of the human papilloma virus (hrHPV). To have a deeper understanding of the pathogenesis of CIN and CC, we systematically analyzed the landscape of genomic alterations and HPV integration profiles in high-grade CIN2/3. We performed deep whole genome sequencing on exfoliated cervical cells and matched peripheral blood samples from a cohort of 51 Chinese patients (of whom 35 were HPV+) with high-grade CIN from 3 ethnic groups and constructed strict integrated workflow of genomic analysis. In addition, the HPV types and integration breakpoints in the exfoliated cervical cells from these patients were examined. Genomic analysis identified 6 significantly mutated genes (SMGs), including CDKN2A, PIK3CB, FAM20A, RABEP1, TMPRSS2 and SS18L1, in 51 CIN2/3 samples. As none of them had previously been identified as SMGs in the Cancer Genome Atlas cervical squamous cell carcinoma and endocervical adenocarcinoma (TCGA-CESC) cohort, future studies with larger sample size of CINs may be needed to validate our findings. Mutational signature analysis showed that mutational signatures of CINs were dramatically different from CCs, highlighting their different mutational processes and etiologies. Moreover, non-silent somatic mutations were detected in all of the CIN2/3 samples, and 88% of these mutations occurred in genes that also mutated in CCs of TCGA cohort. CIN2 samples had significantly less non-silent mutations than CIN3 samples (P = .0006). Gene ontology and pathway level analysis revealed that functions of mutated genes were significantly associated with tumorigenesis, thus these genes may be involved in the development and progression of CC. HPV integration breakpoints occurred in 28.6% of the CIN2/3 samples with HPV infection. Integrations of common high risk HPV types in CCs, including HPV16, 52, 58 and 68, also occurred in the CIN samples. Our results lay the groundwork for a deeper understanding of the molecular mechanisms underlying the pathogenesis of CC and pave the way for new tools for screening, diagnosis and treatment of cervical precancerous and cancerous lesions.


Assuntos
Carcinoma de Células Escamosas , Infecções por Papillomavirus , Lesões Pré-Cancerosas , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/patologia , Carcinoma de Células Escamosas/patologia , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Etnicidade , Lesões Pré-Cancerosas/complicações , Sequenciamento Completo do Genoma , Papillomaviridae/genética
8.
Sci Adv ; 9(41): eadh1037, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831761

RESUMO

Oxidative stress is integral in the development of atherosclerosis, but knowledge of how oxidative stress affects atherosclerosis remains insufficient. Here, we design a multiplexed diagnostic tool that includes two functions (photoacoustic imaging and urinalysis), for assessing intraplaque and urinary malondialdehyde (MDA), a well-recognized end-product of oxidative stress. Molecular design is conducted to develop the first near-infrared MDA-responsive molecule (MRM). Acid-unlocked ratiometric photoacoustic nanoprobe is designed to report intraplaque MDA, enabling it to reflect plaque burden. Furthermore, MRM is tailored for urinary MDA detection with excellent specificity in a blind study. Moreover, we found a significant difference in urinary MDA between healthy adults and atherosclerotic patients (more than 600 participants). Combining these two functions, such a multiplexed diagnostic tool can dynamically report intraplaque and systemic oxidative stress levels during atherosclerosis progression, pneumonia infection, and drug treatment in atherosclerotic mice, which is promising for the auxiliary diagnosis of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Adulto , Humanos , Animais , Camundongos , Aterosclerose/diagnóstico , Placa Aterosclerótica/diagnóstico , Biomarcadores , Estresse Oxidativo
9.
Cell Rep ; 42(10): 113213, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37804510

RESUMO

The tumor microenvironment (TME) plays decisive roles in disabling T cell-mediated antitumor immunity, but the immunoregulatory functions of its biophysical properties remain elusive. Extracellular matrix (ECM) stiffening is a hallmark of solid tumors. Here, we report that the stiffened ECM contributes to the immunosuppression in TME via activating the Rho-associated coiled-coil-containing protein kinase (ROCK)-myosin IIA-filamentous actin (F-actin) mechanosignaling pathway in tumor cells to promote the generation of TRIM14-scavenging nonmuscle myosin heavy chain IIA (NMHC-IIA)-F-actin stress fibers, thus accelerating the autophagic degradation of cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) to deprive tumor cyclic GMP-AMP (cGAMP) and further attenuating tumor immunogenicity. Pharmacological inhibition of myosin IIA effector molecules with blebbistatin (BLEB) or the RhoA upstream regulator of this pathway with simvastatin (SIM) restored tumor-intrinsic cGAS-mediated cGAMP production and enhanced antitumor immunity. Our work identifies that ECM stiffness is an important biophysical cue to regulate tumor immunogenicity via the ROCK-myosin IIA-F-actin axis and that inhibiting this mechanosignaling pathway could boost immunotherapeutic efficacy for effective solid tumor treatment.


Assuntos
Mecanotransdução Celular , Nucleotidiltransferases , Actinas/metabolismo , GMP Cíclico , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Miosina não Muscular Tipo IIA/metabolismo , Nucleotidiltransferases/metabolismo , Humanos , Animais , Camundongos
10.
Adv Sci (Weinh) ; 10(29): e2303958, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37705110

RESUMO

Owing to their mechanical resilience and non-toxicity, titanium implants are widely applied as the major treatment modality for the clinical intervention against bone fractures. However, the intrinsic bioinertness of Ti and its alloys often impedes the effective osseointegration of the implants, leading to severe adverse complications including implant loosening, detachment, and secondary bone damage. Consequently, new Ti implant engineering strategies are urgently needed to improve their osseointegration after implantation. Remarkably, metalorganic frameworks (MOFs) are a class of novel synthetic material consisting of coordinated metal species and organic ligands, which have demonstrated a plethora of favorable properties for modulating the interfacial properties of Ti implants. This review comprehensively summarizes the recent progress in the development of MOF-coated Ti implants and highlights their potential utility for modulating the bio-implant interface to improve implant osseointegration, of which the discussions are outlined according to their physical traits, chemical composition, and drug delivery capacity. A perspective is also provided in this review regarding the current limitations and future opportunities of MOF-coated Ti implants for orthopedic applications. The insights in this review may facilitate the rational design of more advanced Ti implants with enhanced therapeutic performance and safety.


Assuntos
Estruturas Metalorgânicas , Osseointegração , Titânio/química , Próteses e Implantes , Osso e Ossos
11.
ACS Nano ; 17(16): 15328-15353, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37573530

RESUMO

Ferroptosis, a type of regulated cell death driven by iron-dependent phospholipid peroxidation, has captured much attention in the field of nanomedicine since it was coined in 2012. Compared with other regulated cell death modes such as apoptosis and pyroptosis, ferroptosis has many distinct features in the molecular mechanisms and cellular morphology, representing a promising strategy for treating cancers that are resistant to conventional therapeutic modalities. Moreover, recent insights collectively reveal that ferroptosis is tightly connected to the maintenance of the tumor immune microenvironment (TIME), suggesting the potential application of ferroptosis therapies for evoking robust antitumor immunity. From a biochemical perspective, ferroptosis is intricately regulated by multiple cellular metabolic pathways, including iron metabolism, lipid metabolism, redox metabolism, etc., highlighting the importance to elucidate the relationship between tumor metabolism and ferroptosis for developing antitumor therapies. In this review, we provide a comprehensive discussion on the current understanding of ferroptosis-inducing mechanisms and thoroughly discuss the relationship between ferroptosis and various metabolic traits of tumors, which offer promising opportunities for direct tumor inhibition through a nanointegrated approach. Extending from the complex impact of ferroptosis on TIME, we also discussed those important considerations in the development of ferroptosis-based immunotherapy, highlighting the challenges and strategies to enhance the ferroptosis-enabled immunostimulatory effects while avoiding potential side effects. We envision that the insights in this study may facilitate the development and translation of ferroptosis-based nanomedicines for tumor treatment.


Assuntos
Ferroptose , Neoplasias , Humanos , Nanomedicina , Metabolismo dos Lipídeos , Neoplasias/tratamento farmacológico , Ferro , Microambiente Tumoral
12.
J Am Chem Soc ; 145(32): 17881-17891, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37531186

RESUMO

Atherosclerotic plaque rupture is a significant cause of acute cardiovascular events such as heart attack and stroke, triggered by the decomposition of fiber caps induced by cysteine cathepsin. However, the accurate measurement of cathepsin B (CTB) activity in plaques is challenging due to the low specificity and insufficient penetration depth of available atherosclerosis-associated cathepsin fluorescent probes, hampering reliable assessment of plaque vulnerability. To address these limitations, we added both lipophilic alkyl chain and hydrophilic CTB substrate to the hemicyanine scaffold to develop a lipid-unlocked CTB responsive probe (L-CRP) that uses lipids and CTB as two keys to unlock photoacoustic (PA) signals for measuring CTB activity in lipophilic environments. Such properties allow L-CRP for the reliable imaging of specific CTB activities in foam cells and atherosclerotic plaques while keeping in silence toward CTB in lipid-deficient environments, such as M1-type macrophages and LPS-induced inflammatory lesions. Moreover, the activatable PA signals of L-CRP exhibit a deeper tissue penetration ability (>1.0 cm) than current CTB probes based on near-infrared fluorescent imaging (∼0.3 cm), suitable for atherosclerosis imaging in living mice. In atherosclerotic mice, L-CRP dynamically reports intraplaque CTB levels, which is well-correlated with the plaque vulnerability characteristics such as fiber cap thickness, macrophage recruitment, and necrotic core size, thus enabling risk stratification of atherosclerotic mice complicated with pneumonia. Moreover, L-CRP successfully identifies atherosclerotic plaques in excised human artery tissues, promising for auxiliary diagnosis of plaque vulnerability in clinical application.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Camundongos , Animais , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Catepsina B , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Macrófagos/patologia , Lipídeos
13.
ACS Nano ; 17(16): 15942-15961, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37566558

RESUMO

Orthopedic implants have a high failure rate due to insufficient interfacial osseointegration, especially under osteoporotic conditions. Type H vessels are CD31+EMCN+ capillaries with crucial roles in mediating new bone formation, but their abundance in osteoporotic fracture site is highly limited. Herein, we report a nanoengineered composite coating to improve the in situ osseointegration of a Ti implant for osteoporotic fracture repair, which is realized through inhibiting the stimulator of interferon genes (STING) in endothelial cells (ECs) to stimulate type H vessel formation. Autonomously catalytic DNAzyme-ZnO nanoflowers (DNFzns) were prepared through rolling circle amplification (RCA) of STING mRNA-degrading DNAzymes, which were then integrated on the Ti surface and further sequentially complexed with thioketal-bridged polydopamine and naringenin (Ti/DNFzn/PDA-Nar). ECs and mesenchymal stem cells (MSCs) can be recruited to the implant surface by galvanotaxis, accounting for the negative charges of DNFzn/PDA-Nar, subsequently released Nar under reactive oxygen species (ROS) stimulation to upregulate endothelial nitric oxide synthase (eNOS) in recruited ECs, leading to enhanced local angiogenesis. Meanwhile, the coordinately released DNFzns would abolish STING expression in ECs to transform the newly formed vessels into Type H vessels, thus substantially promoting the osseointegration of Ti implants. This study provides application prospects for improving implant osteointegration for osteoporotic fracture treatment.


Assuntos
DNA Catalítico , Fraturas por Osteoporose , Ratos , Animais , Titânio/farmacologia , Células Endoteliais , Ratos Sprague-Dawley , Osteogênese , Propriedades de Superfície
14.
Acta Biomater ; 169: 289-305, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544392

RESUMO

Immunotherapy is an emerging antitumor modality with high specificity and persistence, but its application for resected tumor treatment is impeded by the low availability of tumor-specific antigens and strong immunosuppression in the wound margin. Here a nanoengineered hydrogel is developed for eliciting robust cooperative ferroptosis-immunotherapeutic effect on resected tumors. Specifically, ß-cyclodextrin (ß-CD) is first grafted onto oxidized sodium alginate (OSA) through Schiff base ligation, which could trap cRGD-modified redox-responsive Withaferin prodrugs (WA-cRGD) to obtain the hydrogel building blocks (Gel@WA-cRGD). Under Ca2+-mediated crosslinking, Gel@WA-cRGD rapidly forms physiologically stable hydrogels, of which the porous network is used to deliver programmed cell death ligand 1 antibodies (aPD-L1). After injection into the post-surgical wound cavity, the ß-CD-entrapped WA-cRGD is detached by the local acidity and specifically internalized by residual tumor cells to trigger ferroptosis, thus releasing abundant damage-associated molecular patterns (DAMPs) and tumor-derived antigens for activating the antigen-presenting cell-mediated cross-presentation and downstream cytotoxic T cell (CTL)-mediated antitumor responses. Furthermore, aPD-L1 could block PD-1/PD-L1 interaction and enhance the effector function of CTLs to overcome tumor cell-mediated immunosuppression. This cooperative hydrogel-based antitumor strategy for ferroptosis-immunotherapy may serve as a generally-applicable approach for postoperative tumor management. STATEMENT OF SIGNIFICANCE: To overcome the immunosuppressive microenvironment in resected solid tumors for enhanced patient survival, here we report a nanoengineered hydrogel incorporated supramolecular redox-activatable Withaferin prodrug and PD-L1 antibody, which could elicit robust cooperative ferroptosis-immunotherapeutic effect against residual tumor cells in the surgical bed to prevent tumor relapse, thus offering a generally-applicable approach for postoperative tumor management.


Assuntos
Ferroptose , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Antígeno B7-H1 , Hidrogéis/farmacologia , Neoplasia Residual , Recidiva Local de Neoplasia , Imunoterapia , Antígenos de Neoplasias , Microambiente Tumoral , Linhagem Celular Tumoral
15.
Acta Biomater ; 169: 434-450, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516418

RESUMO

Radiotherapy is a mainstream modality for breast cancer treatment that employs ionizing radiation (IR) to damage tumor cell DNA and elevate ROS stress, which demonstrates multiple clinically-favorable advantages including localized treatment and low invasiveness. However, breast cancer cells may activate the p53-mediated cell cycle regulation in response to radiotherapy to repair IR-induced cellular damage and facilitate post-treatment survival. F-Box and WD Repeat Domain Containing 7 (FBXW7) is a promoter of p53 degradation and critical nexus of cell proliferation and survival events. Herein, we engineered a cooperative radio-ferroptosis-stimulatory nanomedicine through coordination-driven self-assembly between ferroptosis-inducing Fe2+ ions and FBXW7-inhibiting DNAzymes and further modification of tumor-targeting dopamine-modified hyaluronic acid (HA). The nanoassembly could be selectively internalized by breast cancer cells and disintegrated in lysosomes to release the therapeutic payload. DNAzyme readily abolishes FBXW7 expression and stabilizes phosphorylated p53 to cause irreversible G2 phase arrest for amplifying post-IR tumor cell apoptosis. Meanwhile, the p53 stabilization also inhibits the SLC7A11-cystine-GSH axis, which combines with the IR-upregulated ROS levels to amplify Fe2+-mediated ferroptotic damage. The DNAzyme-Fe-HA nanoassembly could thus systematically boost the tumor cell damaging effects of IR, presenting a simple and effective approach to augment the response of breast cancer to radiotherapy. STATEMENT OF SIGNIFICANCE: To overcome the intrinsic radioresistance in breast cancer, we prepared co-assembly of Fe2+ and FBXW7-targeted DNAzymes and modified surface with dopamine conjugated hyaluronic acid (HA), which enabled tumor-specific FBXW7-targeted gene therapy and ferroptosis therapy in IR-treated breast cancers. The nanoassembly could be activated in acidic condition to release the therapeutic contents. Specifically, the DNAzymes could selectively degrade FBXW7 mRNA in breast cancer cells to simultaneously induce accumulation of p53 and retardation of NHEJ repair, eventually inducing irreversible cell cycle arrest to promote apoptosis. The p53 stabilization would also inhibit the SLC7A11/GSH/GPX4 axis to enhance Fe2+ mediated ferroptosis. These merits could act in a cooperative manner to induce pronounced tumor inhibitory effect, offering new approaches for tumor radiosensitization in the clinics.


Assuntos
Neoplasias da Mama , DNA Catalítico , Proteínas F-Box , Ferroptose , Humanos , Feminino , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , DNA Catalítico/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias da Mama/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteína Supressora de Tumor p53/genética , Dopamina , Ácido Hialurônico , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Pontos de Checagem do Ciclo Celular
16.
Biomaterials ; 299: 122184, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37276796

RESUMO

Hydrogels are a class of biocompatible materials with versatile functions that have been increasing explored for the localized treatment of ulcerative colitis (UC), but various mechanical stimuli may cause premature hydrogel breakage and detachment, impeding their further clinical translation. Here we report a multifunctional mechanically-resilient self-healing hydrogel for effective UC treatment, which is synthesized through the host-guest interaction between dopamine/ß-cyclodextrin-modified hyaluronic acid (HA-CD-DA) and amantadine-modified carboxymethyl chitosan (CMCS-AD). The excessive ß-CD cavities allow the incorporation of dexamethasone (DEX), while the porous hydrogel network potentiates the encapsulation of basic fibroblast growth factor (bFGF) and L-alanyl-l-glutamine (ALG). DA moieties in HA components allow firm adhesion of the hydrogel to the ulcerative lesions after in-situ implantation, while the reversible host-guest interaction between CD and AD could enhance the persistence of hydrogel. The hydrogel demonstrated favorable biocompatibility and could continuously release DEX to induce M1-to-M2 repolarization of mucosal macrophages through inhibiting the toll-like receptor 4 (TLR4)-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) axis. Furthermore, the co-delivered bFGF and ALG facilitates the regeneration of ulcerative mucosa and restore its barrier functions to ameliorate UC symptoms. The mechanically resilient hydrogel offers an integrative approach for UC therapy in the clinics.


Assuntos
Colite Ulcerativa , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Hidrogéis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Mucosa/metabolismo , Inflamação/tratamento farmacológico
17.
Front Endocrinol (Lausanne) ; 14: 1192458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313446

RESUMO

Signaling metabolites can effectively regulate the biological functions of many tissues and organs. ß-Aminoisobutyric acid (BAIBA), a product of valine and thymine catabolism in skeletal muscle, has been reported to participate in the regulation of lipid, glucose, and bone metabolism, as well as in inflammation and oxidative stress. BAIBA is produced during exercise and is involved in the exercise response. No side effect has been observed in human and rat studies, suggesting that BAIBA can be developed as a pill that confers the benefits of exercise to subjects who, for some reason, are unable to do so. Further, BAIBA has been confirmed to participate in the diagnosis and prevention of diseases as an important biological marker of disease. The current review aimed to discuss the roles of BAIBA in multiple physiological processes and the possible pathways of its action, and assess the progress toward the development of BAIBA as an exercise mimic and biomarker with relevance to multiple disease states, in order to provide new ideas and strategies for basic research and disease prevention in related fields.


Assuntos
Ácidos Aminoisobutíricos , Transdução de Sinais , Humanos , Animais , Ratos , Estresse Oxidativo , Biomarcadores
18.
FASEB J ; 37(7): e23033, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37342904

RESUMO

In the obesity context, inflammatory cytokines secreted by adipocytes lead to insulin resistance and are key to metabolic syndrome development. In our previous study, we found that the transcription factor KLF7 promoted the expression of p-p65 and IL-6 in adipocytes. However, the specific molecular mechanism remained unclear. In the present study, we found that the expression of KLF7, PKCζ, p-IκB, p-p65, and IL-6 in epididymal white adipose tissue (Epi WAT) in mice fed a high-fat diet (HFD) was significantly increased. In contrast, the expression of PKCζ, p-IκB, p-p65, and IL-6 was significantly decreased in Epi WAT of KLF7 fat conditional knockout mice. In 3T3-L1 adipocytes, KLF7 promoted the expression of IL-6 via the PKCζ/NF-κB pathway. In addition, we performed luciferase reporter and chromatin immunoprecipitation assays, which confirmed that KLF7 upregulated the expression of PKCζ transcripts in HEK-293T cells. Collectively, our results show that KLF7 promotes the expression of IL-6 by upregulating PKCζ expression and activating the NF-κB signaling pathway in adipocytes.


Assuntos
Transtornos do Metabolismo de Glucose , NF-kappa B , Animais , Camundongos , Células 3T3-L1 , Adipócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Transtornos do Metabolismo de Glucose/metabolismo , Proteínas I-kappa B/metabolismo , Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , NF-kappa B/metabolismo
19.
BMC Cancer ; 23(1): 426, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170248

RESUMO

BACKGROUND: In previous study, we found that the content of medium-chain fatty acid Caprylic Acid (FFA C8:0) may be an important risk factor of obesity induced prostate cancer (PCa). However, the relationship between FFA C8:0 and PCa has not been reported. In this study, we explored whether the FFA C8:0 can promotes the progression of PCa by up-regulating Krüppel-like factor 7 (KLF7). METHODS: We collected tissues from PCa patients and Benign Prostate Hyperplasia (BPH), constructed a primary-tumor bearing mouse model with obesity through high-fat diet, and observed the tumor formation ability of PCa cells. In vitro, CCK8 assay, plate cloning, Transwell and scratch experiment were used to detect the changes in biological behavior of PCa cells stimulated by FFA C8:0. RESULTS: First, we found that the expression level of KLF7 is higher in PCa tissues of patients, and the expression of KLF7 is positively correlated with tumour-promoting gene IL-6, while it is negative correlated with another tumour-suppressor gene p21. Then, this study found that PCa cells were more likely to form tumors in diet induced obese mice. Compared with the normal diet group (ND), the expression levels of KLF7 in tumor tissues in high-fat diet group (HFD) were higher. Futhermore, we verified that high concentrations of FFA C8:0 can promote the biological behavior of PCa cells by activating KLF7/IL-6/p21 signaling pathway, which is mediated by the GPR84. CONCLUSIONS: Our research may provide a potential target for clinical prevention and treatment of PCa which induced by obesity.


Assuntos
Interleucina-6 , Neoplasias da Próstata , Humanos , Masculino , Camundongos , Animais , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Receptores Acoplados a Proteínas G/genética , Obesidade/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...